Exercise 60

If $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=5$, find the following limits.
(a) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow 0} \frac{f(x)}{x}$

Solution

Plugging in $x=0$ or applying the Quotient Law is out of the question because the denominator becomes zero. In order for this limit to exist and be equal to 5 , the numerator must contain a factor of x^{2} that cancels out with the one in the denominator. For simplicity, let

$$
f(x)=A x^{2}
$$

where A is a constant to be determined.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}} & =5 \\
\lim _{x \rightarrow 0} \frac{A x^{2}}{x^{2}} & =5 \\
\lim _{x \rightarrow 0} A & =5 \\
A & =5
\end{aligned}
$$

Substitute this value for A into the hypothesis.

$$
f(x)=5 x^{2}
$$

Therefore,

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} 5 x^{2}=5(0)^{2}=0
$$

and

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{5 x^{2}}{x}=\lim _{x \rightarrow 0} 5 x=5(0)=0 .
$$

